Math Logic: Model Theory \& Computability
Lecture 21

Equivalently, we have the bellowing syntactic version of lompactum:
 T is consistent.
Proof. If T is inconsistent then $T 1-d$ and sine prootione finite, soar bisike subtheory $T_{0} \subseteq T$ proves d, and therefore T_{0} is is-onsistant,

Cor (from syatadic conpactnen). Let I be a set (ot iclicas) and let $\left\{T_{i}\right\}_{i \in I}$ be a nested collection of σ-theories, ie. for an g $i, j \in I, T_{i} \leq T_{j}$ or $T_{j} \subseteq T_{i}$. If each T_{i} is wassistert, then so is $\underset{i \in I}{\cup} T_{i}$.
Proof. HW. \square
Enriching consistent theories.
lemmas about consistency and extensions. Lt T be a σ-theory.
(a) For a r-sentence φ, the theory $T V\{\varphi\}$ is in consistent if $T \vdash \neg \varphi$.
(b) If T is consistent, then for any σ-sentace $\varphi, T \cup\{\varphi\}$ or $T \cup\{>\varphi\}$ is consistent (possibly both).
(c) Adding a Henkin wither: For an extended o-formula $\varphi(v)$, if TV $\{\exists v \varphi\}$ is consistent and c is a constant ggabol in σ that doesn't appear in $T \cup\{\exists v \varphi\}_{\text {, }}$, then $T \cup\{\varphi(c / v)\}$ is consistent. (Thus, $T \cup\{\exists v e, \varphi(c / v)\}$ is also consistent.)

Port (a) $=$. If $T \vdash-\varphi$ then $T U\{\varphi\} \vdash \sim \varphi$ and $T U\{\varphi\} \vdash \varphi$, so TU\{Y\} is inconsistent.
\Rightarrow. Suppose $T \cup\{\varphi\}$ is in wassistent, so $T V\{\varphi\} \vdash \neg T$. Then
 Beand cleo $T+T$, we get by MP that Tr~Y.
(b) Towneds the contrapositive, sappose both TV\{价 and TU\{-ழ\} are incorsisteat. Then by $(a), T \vdash \neg \varphi$ and $T \vdash \neg \neg \varphi$, so T is incoasisteat.
(c) We prove the contrapositive. Suppose $T \cup\{\varphi(c / v)\}^{\prime}$ is in wassistant, so $h_{y}(a), T \vdash \rightarrow \varphi(c / v)$. By Constant Substitintion Lanca, $T \vdash \neg \varphi$, so hy generalization axiom (5), $T+\forall v \neg \varphi$, i.e. Tt $\neg \nexists v e$ hance TU\{ヨuc\} is inoonsistect.
From this if $\left\{\left[\right.\right.$ llows $H_{c} t \operatorname{TV}\{\varphi(\varphi / v), \exists v \varphi\}$ is cossistect and his left ast(W).
Prop. Every consstert σ-theory T admits a σ-maximal consisteat exteasion $\widetilde{T} \supseteq T$.
Proof 1. If follows from the worollary of syatactic coupacturen 1 ht if $\left(T_{i}\right)_{i \in 1}$ is an increasing chair of onsistand theories, then $\bigcup_{i \in I} T_{i}$ is a coscristect theor, so Zorn's lewera applies and gives an inclusion maximal coasis tent o-theong $\tilde{T} \geq T$. This \tilde{T} is σ-unxinal whsistant bese for cal σ-sentence φ, one of $\tilde{T} \cup\{\varphi\}$ and $\widetilde{T} \cup\{-\varphi\}$ is cosident $b\}$ part (b) of the above leanea, so by inclasion maximalits of \tilde{T}, $\varphi \in T$ or $\neg \varphi \in \mathcal{T}$.

Pcoot 2. We ocly prove tora cthl signahare σ to avoid transfinite necarsion. Suppose σ is ctbl, heace Seatences (σ) is ctbl and we tix an enconeration $\left(\varphi_{n}\right)_{n \geqslant 1}$ of all σ-sindences. WL indactively olefine an increasing seycence $\left(T_{n}\right)_{n \geqslant 0}$ of consistat o theories vith $T_{0}:=T$, so that ber each $n \geqslant 1$, either $\varphi_{n} \in T_{n}$ or $\tau \varphi_{n} \in T_{n}$. Let $T_{0}:=T$ aul suppose T_{n} is defined tor $n \geqslant 0$, and we define T_{n+1} as $T_{n+1}:=T_{n} V\left\{\varphi_{n}\right\}$ if $T_{n} \not \forall \neg \varphi_{n}$, and $T_{n+1}:=T_{n} \cup\left\{\neg \varphi_{n}\right)$ if $T_{n} \nvdash \neg \varphi_{n}$.

Then by the coodlace of santactic con pactress, $\tilde{T}:=\bigcup{ }_{n} T_{n}$ is comsistent. Moreover, for each $n \geqslant 1, \varphi_{n} \in \tilde{T}$ or $\neg \varphi_{n} \in \tilde{T}$, so \tilde{T} is σ-mayimal consisteat.

Syatactic-Semactic Duality Theorem.

We aim to prove the following theorem, which
i) culled the Completenen wf First-Ocdec Logie
or jast Gödel's Completeness Nheorem lnot to be confused with the coupletinen of a particalar tirst-order theny).

Codel's Conpletewn Theorem. Every consistent σ-theog is satistiable.
This is equivalect to the folloving thesoem:
Syatactic-Semautic Daclity. For every σ-theog T and σ-sendance φ, $T \vDash \varphi$ iff $T \vdash \varphi$.

Gödel Completenen \Rightarrow S-S Dudity. We alceady showed that $T \vdash \varphi$ inplies $T E \varphi$.
To prove the converse, ve pove the contrapositive: $\operatorname{suppose} T \nLeftarrow \varphi$, then 4, (a) of the above lemma about voccislency, TV\{- φ) is consistant, hence by bödel Coupletenen las a model M $\vDash T V \operatorname{sic}$, so $T \notin \varphi^{\prime}$ hen $M \vDash T$ aul $M \nVdash \varphi$.

S-S Duality \Rightarrow Gödel Completenen. By dualitg, $T F \lambda$ iff $T+\lambda$, which just say hat T is satistiable iff T is cossisteat.

Remark. We have proced Ax's theory for \mathbb{C}, which iuplies, by the coupleten of $A C F_{0}$ the $A C F_{0} \vDash A x^{\prime} s$ thooren toe tixod degree. This proot uses warfiest-order agauents like the coupactum theorer, set theory, pigeonhele primiple, etc, hat the duality theren sass hat $A\left(F_{0}+\right.$ (Ax's theorem hor fixed degceee), so our tang proof was an overkill. Howevel, we haven'd found this fiest-order proef explicitls.

Build a model for a sentence is a finite signathe that assects the existence of 5 elements acd lescribes how ecch wourtant synpol, relation syubol, and tachion sy-bol is deticed.
Cantion. $\exists_{x_{1}} \exists_{x_{2} \ldots} \ldots x_{5}\left(\ldots x_{1}=x_{2} \ldots\right)$ inplies tht a nodel of this shacld have at most 4 elecueats.

